from plotnine import ggplot, aes, geom_point, labs, facet_wrap, theme
from plotnine.data import mpg
Facet wrap
In [1]:
facet_wrap()
creates a collection of plots (facets), where each plot is differentiated by the faceting variable. These plots are wrapped into a certain number of columns or rows as specified by the user.
In [2]:
mpg.head()
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
Basic scatter plot:
In [3]:
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ labs(x="displacement", y="horsepower")
)
Facet a discrete variable using facet_wrap()
:
In [4]:
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap("class")
+ labs(x="displacement", y="horsepower")
)
Control the number of rows and columns with the options nrow
and ncol
:
In [5]:
# Selecting the number of columns to display
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap(
"class",
=4, # change the number of columns
ncol
)+ labs(x="displacement", y="horsepower")
)
In [6]:
# Selecting the number of rows to display
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap(
"class",
=4, # change the number of columns
nrow
)+ labs(x="displacement", y="horsepower")
)
To change the plot order of the facets, reorder the levels of the faceting variable in the data.
In [7]:
# re-order categories
"class"] = mpg["class"].cat.reorder_categories(
mpg["pickup", "suv", "minivan", "midsize", "compact", "subcompact", "2seater"]
[ )
In [8]:
# facet plot with reorded drv category
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap("class")
+ labs(x="displacement", y="horsepower")
)
Ordinarily the facets are arranged horizontally (left-to-right from top to bottom). However if you would prefer a vertical layout (facets are arranged top-to-bottom, from left to right) use the dir
option:
In [9]:
# Facet plot with vertical layout
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap(
"class",
dir="v", # change to a vertical layout
)+ labs(x="displacement", y="horsepower")
)
You can choose if the scale of x- and y-axes are fixed or variable. Set the scales
argument to free-y
, free_x
or free
for a free scales on the y-axis, x-axis or both axes respectively. You may need to add spacing between the facets to ensure axis ticks and values are easy to read.
A fixed scale is the default and does not need to be specified.
In [10]:
# facet plot with free scales
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap(
"class",
="free_y", # set scales so y-scale varies with the data
scales
)+ labs(x="displacement", y="horsepower")
)
You can add additional information to your facet labels, by using the labeller
argument within the facet_wrap()
command. Below we use labeller = 'label_both'
to include the column name in the facet label.
In [11]:
# facet plot with labeller
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap("class", labeller="label_both")
+ labs(x="displacement", y="horsepower")
)
You can add two discrete variables to a facet:
In [12]:
# add additional column for plotting exercise
"transmission"] = mpg["trans"].map(
mpg[lambda x: "auto" if "auto" in x else "man" if "man" in x else ""
)
In [13]:
# inspect new column transmission which identifies cars as having an automatic or manual transmission
mpg.head()
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | transmission | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact | auto |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact | man |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact | man |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact | auto |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact | auto |
In [14]:
# facet plot with two variables on one facet
(="displ", y="hwy"))
ggplot(mpg, aes(x+ geom_point()
+ facet_wrap(["class", "transmission"]) # use a list to add additional facetting variables
+ labs(x="displacement", y="horsepower")
)