Back to Article
Categorized Data Plot
Download Notebook

Categorized Data Plot

In [1]:

from plotnine import ggplot, aes, geom_count, scale_size_continuous
from plotnine.data import diamonds

geom_count() makes the point size proportional to the number of points at a location

In [2]:
diamonds.head()
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
In [3]:
(
    ggplot(diamonds)
    + geom_count(aes(x="cut", y="color"))
)

We can adjust the size range of the points with scale_size_continuous

In [4]:
(
    ggplot(diamonds)
    + geom_count(aes(x="cut", y="color"))
    + scale_size_continuous(range=[1, 20])
)