import pandas as pd
import numpy as np
from plotnine import (
ggplot,
aes,
geom_tile,
geom_text,
scale_y_reverse,
scale_y_discrete,
scale_fill_brewer,
scale_color_manual,
coord_equal,
theme,
theme_void,
element_blank,
element_rect,
element_text, )
Periodic Table
In [1]:
Graphing of highly organised tabular information
Read the data.
In [2]:
= pd.read_csv("data/elements.csv")
elements elements.head()
atomic number | symbol | name | atomic mass | CPK | electronic configuration | electronegativity | atomic radius | ion radius | van der Waals radius | ... | EA | standard state | bonding type | melting point | boiling point | density | metal | year discovered | group | period | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | H | Hydrogen | 1.00794 | #FFFFFF | 1s1 | 2.20 | 37.0 | NaN | 120.0 | ... | -73.0 | gas | diatomic | 14.0 | 20.0 | 0.00009 | nonmetal | 1766 | 1 | 1 |
1 | 2 | He | Helium | 4.002602 | #D9FFFF | 1s2 | NaN | 32.0 | NaN | 140.0 | ... | 0.0 | gas | atomic | NaN | 4.0 | 0.00000 | noble gas | 1868 | 18 | 1 |
2 | 3 | Li | Lithium | 6.941 | #CC80FF | [He] 2s1 | 0.98 | 134.0 | 76 (+1) | 182.0 | ... | -60.0 | solid | metallic | 454.0 | 1615.0 | 0.54000 | alkali metal | 1817 | 1 | 2 |
3 | 4 | Be | Beryllium | 9.012182 | #C2FF00 | [He] 2s2 | 1.57 | 90.0 | 45 (+2) | NaN | ... | 0.0 | solid | metallic | 1560.0 | 2743.0 | 1.85000 | alkaline earth metal | 1798 | 2 | 2 |
4 | 5 | B | Boron | 10.811 | #FFB5B5 | [He] 2s2 2p1 | 2.04 | 82.0 | 27 (+3) | NaN | ... | -27.0 | solid | covalent network | 2348.0 | 4273.0 | 2.46000 | metalloid | 1807 | 13 | 2 |
5 rows × 21 columns
Alter the data types of the information that will be plotted. This makes it convenient to work with.
In [3]:
"group"] = [-1 if g == "-" else int(g) for g in elements.group]
elements["bonding type"] = elements["bonding type"].astype("category")
elements["metal"] = elements["metal"].astype("category")
elements["atomic_number"] = elements["atomic number"].astype(str) elements[
The periodic table has two tables, a top
and bottom
. The elements in the top
have groups, and those in the bottom
have no groups. We make separate dataframes for both – they have different alignments.
In [4]:
= elements.query("group != -1").copy()
top = elements.query("group == -1").copy() bottom
The top
table is nice and well behaving. The x
location of the elements indicate the group and the y
locations the period.
In [5]:
"x"] = top.group
top["y"] = top.period top[
The bottom
table has 2 rows, with the atomic number
increasing to the right. We create an x
based on the atomic number
and add a horizontal shift
. As the dataframe is ordered by atomic number
, the operation is easier. The bottom
elements are labelled with a “period”. We add a vertical shift to give us a good y
location that gives the appearance of two tables.
In [6]:
= 2
nrows = 3.5
hshift = 3
vshift "x"] = np.tile(np.arange(len(bottom) // nrows), nrows) + hshift
bottom["y"] = bottom.period + vshift bottom[
We will be plotting using tiles and we want to have some space between the tiles. We have set the x
and y
locations above to take up a unit of space. To get a good effect, the tile dimensions should be less than 1.
In [7]:
= 0.95
tile_width = 0.95 tile_height
First peak
In [8]:
("x", "y"))
ggplot(aes(+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
)
The table upside down. We could have been more careful when creating the y
locations since the periods are drawn in descending order. But, we can fix that with a reverse
scale.
In [9]:
("x", "y"))
ggplot(aes(+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ scale_y_reverse() # new
)
Let us apply some color to it.
In [10]:
("x", "y"))
ggplot(aes(+ aes(fill="metal") # new
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ scale_y_reverse()
)
Now for some trick
Goal: To add text to the tiles
There are four pieces of text that we shall add to the tiles, that is 4 geom_text
additions. As we have two tables, that comes to 8 geom_text
additions. When any geom
is added to a ggplot
object, behind the scenes a layer is created and added. We can create a group of layers that can be added to a ggplot
object in one go using a list.
We use a function that accepts a dataframe, and returns a list of geoms.
In [11]:
def inner_text(data):
= [
layers
geom_text(
data,="atomic_number"),
aes(label=-0.40,
nudge_x=0.40,
nudge_y="left",
ha="top",
va="normal",
fontweight=6,
size
),="symbol"), nudge_y=0.1, size=9),
geom_text(data, aes(label
geom_text(="name"), nudge_y=-0.125, fontweight="normal", size=4.5
data, aes(label
),
geom_text(="atomic mass"), nudge_y=-0.3, fontweight="normal", size=4.5
data, aes(label
),
]return layers
In [12]:
("x", "y"))
ggplot(aes(+ aes(fill="metal")
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ inner_text(top) # new
+ inner_text(bottom) # new
+ scale_y_reverse()
)
It is crowded in there and the tiles do not have equal dimentions. Use the theme
create a larger figure. coord_equal
give us equal units along the axes, this makes the tiles square.
In [13]:
("x", "y"))
ggplot(aes(+ aes(fill="metal")
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ inner_text(top)
+ inner_text(bottom)
+ scale_y_reverse()
+ coord_equal(expand=False) # new
+ theme(figure_size=(12, 6)) # new
)
It is has all the information we want, except one for complication. Elements Lu
and Lr
also belong in the bottom table. One way to show this duality is to have tiles with two colors split horizontally.
The colors are determined by the metal
field, and we know the x
and y
locations. We create a dataframe with this information to create a half-tile. A half-tile is centered at the quarter mark.
In [14]:
= pd.DataFrame(
split_df
{"x": 3 - tile_width / 4,
"y": [6, 7],
"metal": pd.Categorical(["lanthanoid", "actinoid"]),
} )
In [15]:
("x", "y"))
ggplot(aes(+ aes(fill="metal")
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(split_df, aes(width=tile_width / 2, height=tile_height)) # new
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ inner_text(top)
+ inner_text(bottom)
+ scale_y_reverse()
+ coord_equal(expand=False)
+ theme(figure_size=(12, 6))
)
Change the fill
color for a different look and use a theme
that clears out all the clutter.
In [16]:
from plotnine import guides
("x", "y"))
ggplot(aes(+ aes(fill="metal")
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(split_df, aes(width=tile_width / 2, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ inner_text(top)
+ inner_text(bottom)
+ scale_y_reverse()
+ scale_fill_brewer(type="qual", palette=3) # new
+ coord_equal(expand=False)
+ theme_void() # new
+ theme(
=(12, 6),
figure_size=0.01,
plot_margin_left=0.01,
plot_margin_right=element_rect(fill="white"),
plot_background# new
) )
Add the group number along the top most row of each column, and period number along the left side of the top table.
For the period number, we set the breaks
on the y scale
.
In [17]:
# The location of the group number is the top most (and therefore smallest period)
# element with the group
= top.groupby("group").agg(y=("period", "min")).reset_index() groupdf
Finally,
In [18]:
# Gallery, tiles
("x", "y"))
ggplot(aes(+ aes(fill="metal")
+ geom_tile(top, aes(width=tile_width, height=tile_height))
+ geom_tile(split_df, aes(width=tile_width / 2, height=tile_height))
+ geom_tile(bottom, aes(width=tile_width, height=tile_height))
+ inner_text(top)
+ inner_text(bottom)
+ geom_text(
groupdf,"group", "y", label="group"),
aes(="gray",
color=0.525,
nudge_y="bottom",
va="normal",
fontweight=9,
size=False,
inherit_aes# new
) + scale_y_reverse(breaks=range(1, 8), limits=(0, 10.5)) # modified
+ scale_fill_brewer(type="qual", palette=3)
+ coord_equal(expand=False)
+ theme_void()
+ theme(
=(12, 6),
figure_size=0.01,
plot_margin_left=0.01,
plot_margin_right=element_rect(fill="white"),
plot_background=element_text(margin={"r": 5}, color="gray", size=9), # new
axis_text_y
) )
What we could have done different:
- After we set the
x
andy
positions in th thetop
andbottom
dataframes, we could have concatenated them back together. Then, thatLayers
trick would not save us much.
Pro tip: Save the plot as a pdf.
Annotated Heatmap
Conditinous data recorded at discrete time intervals over many cycles
Read data
In [19]:
= pd.read_csv("data/flights.csv")
flights = flights["month"].unique() # Months ordered January, ..., December
months "month"] = pd.Categorical(flights["month"], categories=months)
flights[ flights.head()
year | month | passengers | |
---|---|---|---|
0 | 1949 | January | 112 |
1 | 1949 | February | 118 |
2 | 1949 | March | 132 |
3 | 1949 | April | 129 |
4 | 1949 | May | 121 |
In [20]:
# We use 'factor(year)' -- a discrete -- instead of 'year' so that all the years
# are displayed along the x-axis.
# The .95s create spacing between the tiles.
("factor(year)", "month", fill="passengers"))
ggplot(flights, aes(+ geom_tile(aes(width=0.95, height=0.95))
+ geom_text(aes(label="passengers"), size=9)
)
That looks like what we want, but it could do with a few tweaks. First the contrast between the tiles and the text is not good for the lower passenger numbers. We use pd.cut
to partition the number of passengers into two discrete groups.
In [21]:
"p_group"] = pd.cut(
flights["passengers"], (0, 300, 1000), labels=("low", "high")
flights[
) flights.head()
year | month | passengers | p_group | |
---|---|---|---|---|
0 | 1949 | January | 112 | low |
1 | 1949 | February | 118 | low |
2 | 1949 | March | 132 | low |
3 | 1949 | April | 129 | low |
4 | 1949 | May | 121 | low |
In [22]:
("factor(year)", "month", fill="passengers"))
ggplot(flights, aes(+ geom_tile(aes(width=0.95, height=0.95))
+ geom_text(aes(label="passengers", color="p_group"), size=9, show_legend=False) # modified
+ scale_color_manual(["white", "black"]) # new
)
Last tweaks, put January
at the top and remove the axis ticks and plot background.
In [23]:
# Gallery, tiles
("factor(year)", "month", fill="passengers"))
ggplot(flights, aes(+ geom_tile(aes(width=0.95, height=0.95))
+ geom_text(aes(label="passengers", color="p_group"), size=9, show_legend=False)
+ scale_color_manual(["white", "black"]) # new
+ scale_y_discrete(limits=months[::-1]) # new
+ theme( # new
=element_blank(),
axis_ticks=element_rect(fill="white"),
panel_background
) )
You can get similar results if you replace
+ geom_tile(aes(width=.95, height=.95))
+ geom_text(aes(label='passengers', color='p_group'), size=9, show_legend=False)
with
+ geom_label(aes(label='passengers', color='p_group'), size=9, show_legend=False)
Credit: This example is a recreation of this seaborn example.