import pandas as pd
from plotnine import (
ggplot,
aes,
geom_boxplot,
geom_jitter,
scale_x_discrete,
coord_flip, )
plotnine.geom_boxplot
geom_boxplot(=None,
mapping=None,
data*,
="boxplot",
stat="dodge2",
position=False,
na_rm=True,
inherit_aes=None,
show_legend=False,
raster=None,
width=1,
outlier_alpha=None,
outlier_color="o",
outlier_shape=1.5,
outlier_size=0.5,
outlier_stroke=False,
notch=False,
varwidth=0.5,
notchwidth=2,
fatten**kwargs
)
Box and whiskers plot
Parameters
mapping : aes = None
-
Aesthetic mappings created with aes. If specified and
inherit_aes=True
, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.Aesthetic Default value lower middle upper x ymax ymin alpha 1
color '#333333'
fill 'white'
group linetype 'solid'
shape 'o'
size 0.5
weight 1
The bold aesthetics are required.
data : DataFrame = None
-
The data to be displayed in this layer. If
None
, the data from from theggplot()
call is used. If specified, it overrides the data from theggplot()
call. stat : str | stat = "boxplot"
-
The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.
position : str | position = "dodge2"
-
Position adjustment. If it is a string, it must be registered and known to Plotnine.
na_rm : bool = False
-
If
False
, removes missing values with a warning. IfTrue
silently removes missing values. inherit_aes : bool = True
-
If
False
, overrides the default aesthetics. show_legend : bool | dict = None
-
Whether this layer should be included in the legends.
None
the default, includes any aesthetics that are mapped. If abool
,False
never includes andTrue
always includes. Adict
can be used to exclude specific aesthetis of the layer from showing in the legend. e.gshow_legend={'color': False}
, any other aesthetic are included by default. raster : bool = False
-
If
True
, draw onto this layer a raster (bitmap) object even ifthe final image is in vector format. width : float = None
-
Box width. If
None
, the width is set to90%
of the resolution of the data. Note that if the stat has a width parameter, that takes precedence over this one. outlier_alpha : float = 1
-
Transparency of the outlier points.
outlier_color : str | tuple = None
-
Color of the outlier points.
outlier_shape : str = "o"
-
Shape of the outlier points. An empty string hides the outliers.
outlier_size : float = 1.5
-
Size of the outlier points.
outlier_stroke : float = 0.5
-
Stroke-size of the outlier points.
notch : bool = False
-
Whether the boxes should have a notch.
varwidth : bool = False
-
If
True
, boxes are drawn with widths proportional to the square-roots of the number of observations in the groups. notchwidth : float = 0.5
-
Width of notch relative to the body width.
fatten : float = 2
-
A multiplicative factor used to increase the size of the middle bar across the box.
**kwargs : Any = {}
-
Aesthetics or parameters used by the
stat
.