plotnine.geom_point

geom_point(
    mapping=None,
    data=None,
    *,
    stat="identity",
    position="identity",
    na_rm=False,
    inherit_aes=True,
    show_legend=None,
    raster=False,
    **kwargs
)

Plot points (Scatter plot)

Parameters

mapping : aes = None

Aesthetic mappings created with aes. If specified and inherit_aes=True, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.

Aesthetic Default value
x
y
alpha 1
color 'black'
fill None
group
shape 'o'
size 1.5
stroke 0.5

The bold aesthetics are required.

data : DataFrame = None

The data to be displayed in this layer. If None, the data from from the ggplot() call is used. If specified, it overrides the data from the ggplot() call.

stat : str | stat = "identity"

The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.

position : str | position = "identity"

Position adjustment. If it is a string, it must be registered and known to Plotnine.

na_rm : bool = False

If False, removes missing values with a warning. If True silently removes missing values.

inherit_aes : bool = True

If False, overrides the default aesthetics.

show_legend : bool | dict = None

Whether this layer should be included in the legends. None the default, includes any aesthetics that are mapped. If a bool, False never includes and True always includes. A dict can be used to exclude specific aesthetis of the layer from showing in the legend. e.g show_legend={'color': False}, any other aesthetic are included by default.

raster : bool = False

If True, draw onto this layer a raster (bitmap) object even ifthe final image is in vector format.

**kwargs : Any = {}

Aesthetics or parameters used by the stat.

Examples


import numpy as np
import pandas as pd
from plotnine import (
    ggplot,
    aes,
    geom_point,
    theme_matplotlib,
    theme_set,
)

# Set default theme for all the plots
theme_set(theme_matplotlib())
np.random.seed(123)
n = 150

df = pd.DataFrame({
    "x": np.random.randint(0, 101, n),
    "y": np.random.randint(0, 101, n),
    "var1": np.random.randint(1, 6, n),
    "var2": np.random.randint(0, 11, n)
})

Basic Scatter Plot

# Gallery, points
(
    ggplot(df, aes("x", "y"))
    + geom_point()
)

Coloured Point Bubbles

(
    ggplot(df, aes("x", "y", size="var1"))
    + geom_point(aes(color="var2"))
)

# Gallery, points
(
    ggplot(df, aes("x", "y", size="var1"))
    + geom_point(aes(fill="var2"), stroke=0, alpha=0.5)
    + geom_point(aes(color="var2"), fill="none")
)

Source: Set default theme for all the plots